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Abstract. A new scheme for detecting edges in multi-channel SAR im-
ages is proposed1. The method is applied to a set of two full-polarimetric
SAR images, i.e. a P-band and an L-band image. The first step is a low-
level edge detector based on multi-variate statistical hypothesis tests.
As the spatial resolution of the two SAR bands is not the same, the
test is applied to the polarimetric information for each band separately.
The multi-variate statistical hypothesis test is used to decide whether an
edge of a given orientation passes through the current point. The test
is repeated for a discrete number of orientations. Eight orientations are
used. The response for the different orientations of the scanning rectan-
gles as well as for different bands is combined using a method based on
Dempster-Shafer Theory. The proposed scheme was applied to a multi-
channel E-SAR image2 and results are shown and evaluated.

1 Introduction

Synthetic Aperture Radar (SAR) image products are very important and useful
for remote sensing applications because they can be acquired independent of
time of day or weather conditions and because their characteristics (wavelength,
polarisation, observation angle) can be chosen in function of the phenomenon
under investigation. The first satellite-based SAR systems used for remote sens-
ing were single-band mono-polarisation systems with a spatial resolution of a
few tens of meters (e.g. 25m for ERS1, 30m for Radarsat). However, scene inter-
pretation results can be greatly enhanced by combining different SAR images [1]
e.g. multi-polarisation, multi-frequency, different aspect angles, multi-temporal,
etc. In future satellite systems, the spatial resolution will be improved to a few
meters and the systems will be capable to acquire high-resolution polarimetric
and/or multi-frequency, i.e. multi-channel, data. Current airborne SAR systems
are already capable to acquire multi-channel SAR images with a metric resolu-
tion. For the automatic interpretation of such images, adequate low-level image

1 The presented research is done in the frame of a European project IST-2000-25044:
SMART (Space and Airborne Mined Area Reduction Tools)

2 The test image was provided to us by the German Aerospace Center (DLR).



processing tools are needed. In this paper we propose an edge detection scheme
for multi-channel SAR images. Current edge detectors were designed to work on
low-resolution, single-band, multi-look SAR images. The most widely used edge
detector for such SAR images is the ratio-detector [2]. It is based on the speckle
distribution in uniform regions in single-band multi-look intensity images. In
[3, 4] we proposed new edge detectors for polarimetric SAR images and based
on multi-variate statistical hypothesis tests. The hypothesis test is applied for
different orientations of a set of two scanning rectangles. In order to determine
whether a vertical edge passes through a point P two vertical rectangles are con-
structed around the point P and the statistics of the pixels in both rectangles
are compared using the hypothesis test. The test is repeated for a given number
of different orientations of the scanning rectangles. Normally the maximum of
the response over all orientations is considered as the global edge response. In
this article we investigate a new and improved way to combine (fuse) the re-
sponses of statistical edge detectors. The method is based on Dempster-Shafer
evidence theory [5, 6] which is briefly described in section 3. In a first step the
fusion method is applied to combine the response of the statistical test over the
different orientations of the scanning rectangles. In a second step the same fu-
sion method is used to combine edge detection results obtained from the two
frequency-bands. In section 2 the edge detector based on multi-variate statisti-
cal hypothesis is introduced, section 3 gives a brief summary of Dempster-Shafer
evidence theory which is applied to the fusion of edge detection results in section
4. In section 5 results of applying the method on a set of two polarimetric SAR
images, are shown and discussed. The last section presents the conclusions and
the perspectives for further research.

2 An Edge Detector based on Multi-Variate Statistics

An obvious way to detect edges in multi-channel images is to fuse the results of
existing detectors applied on each individual channel. An alternative is to use
multi-variate statistical methods which treat the combined information from
the different channels as a single input-vector. We have already successfully
introduced such methods for detecting edges in polarimetric SAR images [3, 4].
Fig. 1 illustrates the two approaches that can be used for detecting edges in multi-
channel SAR images. A comparative evaluation [7] has shown that the multi-
variate methods outperform the fusion of uni-variate methods. The multi-variate
hypothesis test for equality of variances that was used is the Levene test [8]. It is
applied to the single-look complex data where differences in radar backscattering
appear as differences in variance of a zero-mean normal distribution. The null-
hypothesis Ho is that the samples from the two scanning rectangles are from
populations with the same variance, the alternative hypothesis H1 is that the
population variances are different. In the Levene test the samples from the two
scanning windows are first transformed in absolute deviations of sample means.
In the case of a single-look complex polarimetric image with complex data of
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in which i is the index of the observations and k the index of the scanning win-
dow (k=1 or 2). The question whether two samples display significantly different
amounts of variance is then transformed into a question of whether the trans-
formed values show a significantly different mean. This can then be tested using
a Hotellings T 2-test [9, 8]. The Hotellings T 2-statistic is defined as:

T 2 =
n1n2(L1 − L2)tC−1(L1 − L2)

n1 + n2
, (2)

with Lk the average of the Lik values in the kth window and [C] the pooled
covariance matrix estimated by:

C =
(n1 − 1)C1 + (n2 − 1)C2

n1 + n2 − 2
, (3)

where C1 and C2 represent the covariance matrices estimated from the two
scanning rectangles. The significance of T 2 is determined by using the fact that
in the null-hypothesis of equal population means the transformed statistic

TF =
(n1 + n2 − p − 1)T 2

(n1 + n2 − 2)p
(4)

follows a Fisher-Snedecor distribution, Fν1,ν2
with degrees of freedom ν1 = p

and ν2 = n1 +n2−p−1. p is the number of variants, i.e. 6 in our case if the real
and imaginary components for each polarisation are counted separately. From
the theoretical distribution of the test statistic the theoretical α% false alarm
threshold θα for the detector can be determined. It is given by

P {TF ≥ θα | Ho} = α . (5)

The theoretical distribution of the test-statistic when the null-hypothesis is ver-
ified is used to transform the test-statistic in each point in the image into the



corresponding p-value. For a value pf the test-statistic TF (x, y), found in a given
pixel, the p-value is the probability that an even more extreme value can be found
when the null-hypothesis is verified. A low p-value means the test-statistic is very
extreme and indicates that the null-hypothesis is probably not verified, i.e. the
region corresponding to the two scanning rectangles is not uniform, and there
might be an edge passing between the two rectangles. Using p-values allows to
compare and combine results of different edge operators.

3 Overview of the Dempster-Shafer Theory Framework

The aim of the fusion described in the current article is to combine the response
of the edge detector for different orientations of the scanning rectangles as well
as to combine the results obtained in different SAR images of the same scene.
The proposed fusion method is based on Dempster-Shafer (DS) theory [5, 6] .
Dempster-Shafer or evidence theory is a mathematical tool that allows to work
with uncertain, imprecise and incomplete information. The uncertainty is taken
into account by assigning masses to sets of different hypotheses. Several experts
distribute their knowledge over these different hypotheses and a final decision
is obtained after combining the masses assigned by each expert. In DS-theory
a set of hypotheses is defined: Θ = {H1, H2, ...Hn}. The different experts or
sources of information distribute masses to sub-sets Ai of Θ. For each source of
information a mass function is defined as:

m : 2θ → [0, 1]
Ai → m(Ai)

, (6)

in which 2θ is the set of all sub-sets of Θ and m(Ai) represents the confidence
that the information source has that the solution lies in the sub-set Ai. The
attribution of masses for each information source is constrained by the following
rules:

0 ≤ m(Ai) ≤ 1 ,

m(Φ) = 0 ,
∑

Ai∈2Θ m(Ai) = 1 ,

(7)

where Φ denotes the empty set. The solution is found by combining the masses
attributed to the different sub-sets by the different experts. The combination of
masses from different experts is done by Dempster’s combination rule. Let m1

and m2 be the masses that were respectively attributed by expert 1 and expert
2, then the combination of the masses from these two is defined as:

m12(Ai) =
∑

Ap∩Aq=Ai

m1(Ap)m2(Aq) . (8)

Masses are thus attributed to the sub-set formed by the intersection of the dif-
ferent sub-sets. Depending on what happens when the intersection is empty, one
distinguishes the closed world or the open world model. In the closed world one
assumes that the solution corresponds necessarily to one of the defined sub-sets.



Any mass that would be combined into the empty set is therefore redistributed
over all other sets and the mass of the empty set remains zero. In the open world
model one allows the possibility that the solution is not part of the defined sub-
sets. A mass that goes into the empty set can then be interpreted as a symptom
of the fact that the solution is not within the sub-sets or that different experts
have incompatible opinions. From the combined masses two functions can be
derived that characterise the support to the final decision. The first is called the
belief (Bel) and represents the degree of minimal support on sub-set Ai. The
second is called plausibility (P ls) and corresponds to the maximal or potential
support to a given sub-set in the final mass assignment [6]. They are defined as:

Bel(Ai) =
∑

Aj ⊆ Ai

Aj 6= Φ

m(Aj) , P ls(Ai) =
∑

Aj∩Ai
m(Aj) .

(9)

In the design of a system for fusion of information based on DS-theory one
distinguishes the following steps:

– Define the sub-sets relative to the problem
– Choose the model (closed or open)
– Define the mass functions used by each expert to distribute its confidence to

the different sets

4 Application of DS-Theory to the Fusion of Edge

Detection Results

4.1 Definition of the Sub-Sets and the Strategy

The aim is to combine the response of the edge detector for different orientations
of the scanning rectangles. The edge detector for each orientation of the windows
is considered as an expert giving its opinion about the presence of an edge along
that direction. A small p-value means the expert has a strong opinion about
the presence of the edge and consequently a high confidence should be given to
that direction. The larger the p-value, the less strong the opinion is and the less
confidence should be given to that particular direction. We use 8 orientations
D0..D7 (ranging from D0 = 0 to D7 = 157.5o in steps of 22.5o) of the scanning
rectangles and we say that if a low p-value is found for a given direction, it
does not necessarily mean an edge is located along that direction; it could be
oriented along neighbouring directions. Even when we find an edge in a given
orientation, we do not know whether there is, in the same point not also an edge
along another orientation (a corner). Therefore we need to attribute also some
mass to the other directions. We have defined the following sub-sets of directions:

– the singleton: {Di},
– the triplet: {Di−1, Di, Di+1},
– the complement of the direction {Di}
– the complete set of directions {D0..D7}



The open world model is the most convenient for our problem [13]. In general
the mass of the empty set m(Φ) after combining the masses is an indication for
a disagreement between experts or for the fact that the solution is not among
the defined sub-sets. This mass should therefore be high at corners The mass of
the complete set mC indicates an indecisiveness of the experts. It will be low in
edges or corners and high in the background. Three cases are distinguished:

– Background: If all p-values are “high”, probably no edge is present, and we
attribute most of the mass to the complete set of orientations, i.e. we know
nothing to decide the orientation of an edge. The complete set will, when
the masses are combined over different experts, not contribute to the mass
of the empty set. Therefore the mass of the empty set will be very low.

– Corners: Here several experts may detect an intermediate p-value and we
should find a high conflict between the experts and the mass of the empty
set should be high.

– Edges: The p-value for the correct edge direction is very low while neigh-
bouring directions will also have a low p-value. The mass of the complete
set should be low because some experts are very sure, while there is some
conflict due competing neighbouring directions.

4.2 Learning the System’s Parameters

For determining the system’s parameters a learning set with examples of edge
(EP), corner (CP) and background points (BP) was selected.

Thresholds for the p-Values. In order to introduce a dependence of the mass
assignment on the p-values that are obtained for the different orientations, the
range of possible p-values was sub-divided into 5 sub-ranges corresponding to
increasing p-value. The actual borders are fixed by studying the p-values of the
set of learning points for a given edge direction. The thresholds are selected such
that for the correct edge direction the p-values are very low or low; for corners
they are intermediate or high and in the background the p-values are high or
very high. The p-value thresholds that gave the best results for the Levene test
are: T1 = 10−8, T2 = 10−7, T3 = 10−4, T4 = 10−2.

Optimisation of the Mass Functions. Even when the sub-sets are chosen
and when we know what should be the result of the combination of masses from
different experts, it is still difficult to design the mass functions consequently.
We therefore determined the mass functions automatically on the basis of a
small learning set. In order to find the optimal mass functions a cost function
Ctot = CΦ + CC is defined as the sum of a cost function defined on the empty
set and the complete set as:

CΦ =
1

NBP

∑

p∈BP

[mΦ,p − 0.1]
2
+

1

NEP

∑

p∈EP

[mΦ,p − 0.5]
2
+

1

NCP

∑

p∈CP

[mΦ,p − 0.9]
2

,

(10)



CC =
1

NBP

∑

p∈BP

[mC,p − 0.5]
2
+

1

NEP

∑

p∈EP

[mC,p − 0.1]
2
+

1

NCP

∑

p∈CP

[mC,p − 0.1]
2

.

(11)
The masses of the different sub-sets are adapted iteratively in order to minimise
the cost function Ctot on the learning points. The optimisation is performed
using the downhill simplex method of Nelder and Mead [10, 11]. Convergence
is reached after 20 to 25 iterations. The resulting mass functions are shown in
table 4.2. The general tendency for the resulting mass functions after optimi-
sation is that for very low p-values most of the mass goes to the singleton. As
p-value increases the mass of the triplet (neighbouring edge orientations) and
the complement (a possible indication of corners) increases and finally, for very
high p-values, most of the mass is concentrated in the complete set which cor-
responds to undeciveness (background). Masses in the table correspond to the
value assigned when the p-value corresponds to the given thresholds; for p-values
in between the thresholds, masses are linearly interpolated.

Table 1. Mass functions after optimisation of cost function

Sub-Set Threshold
0.0 T1 T2 T3 T4 1.0

{Di} 0.497 0.473 0.014 0.101 0.018 0.021
{Di−1, Di, Di+1} 0.174 0.062 0.906 0.131 0.010 0.089

{Di} 0.066 0.329 0.005 0.299 0.000 0.009
{D0..D7} 0.262 0.136 0.075 0.470 0.972 0.882

4.3 Fusion of Results from Different Frequency Bands

The test set used in this paper consists of two polarimetric images, respectively
in P-band and L-band. The two images were acquired from two parallel flight
paths and cover approximately the same region. However the spatial resolution
of both images is not the same. Together with the SLC images we received
transformation matrices that enable one to find the ground coordinates of each
point in the SLC images. These were obtained by the German Space Agency
DLR by geocoding the SAR image using a DEM of the region. By combining
the transformation matrices from the two bands it is thus possible to find the
relationship between the positions in the two images. However, because of the
difference in spatial resolution, this is not a one-to-one relationship. This is why
we decided to apply the raw edge detector to each band separately and fuse only
the results of the edge detection. In this paper we used the two images as two
sets of experts voting for a given edge orientation in each pixel of the P-band
image. The DS-based fusion is used to combine the different experts for different
edge orientations as well as for the two bands. As a reference, the image with
lowest resolution is used, i.e. the P-band image. The P-band image is scanned



and in each pixel first the edge information from the different orientation experts
is gathered and then the corresponding point in the L-band image is determined
and the edge information from the L-band image at that point is also gathered.
The DS-fusion is used to combine this joint information.

5 Results and Discussion

5.1 Fusion of Edge Orientations

In fig. 2 a part of the original P-band E-SAR image is shown on the left. The
edge detector is applied to the three polarisations simultaneously. The dimension
of the scanning rectangles is 10 × 50. The 2nd and 3rd image respectively show
the mass of the empty set mΦ and of the complete set mC after combination of
masses. High values for mΦ correspond to corners and to other locations in the

0

22.5

45

57.5

90

112.5

135

157.5

o

o

o

o

o

o

o

o

Fig. 2. Pband image results (from left to right: original image, mΦ, mC and image of
edge orientations)

image with high uncertainty with respect to the orientation of edges, e.g. highly
textured regions (built-up areas, forests or lines of trees). On the other hand mC

is low at the position of edges and corners. The decision whether a given point of
the image corresponds to an edge (or corner) can thus be based on the combined
information in mΦ and mC . If the point belongs to an edge, the orientation of
the edge can be derived from the plausibility and the belief. The orientation
corresponds to the singleton of directions for which the highest plausibility is
found. The right image of fig. 2 represents the image of edge orientations.

5.2 Fusion of Edge Detection Results from the Two Bands

In fig. 3 the results of fusing the edge information of the P- and L-band image are
shown. Note that the L-band image in the figure was geometrically rescaled to
the same size as the P-band image for display purposes. Results are also shown
in the coordinates of the P-band image. Note that the image of the complete set
shows more edge detail after the fusion.



Fig. 3. Results of fusing the edge information of the two frequency bands (from left to
right: original L-band image, results after fusion for mΦ, mC and edge orientation)

5.3 Comparative Evaluation of the Results

The images above already show that the results after fusion of the two bands
are better than without the fusion. In order to obtain a quantitative idea of
the detector’s performance we determined the Receiver-Operator Characteristic
(ROC) curves for edge detection based on the P-band alone and after fusion
of P-band and L-band. ROC curves show the probability of detection Pd of a
detector versus its probability of false alarms Pf . Pd and Pf are determined on a
test image in which the true edges are known. These “true” edges were indicated
manually on the image. The ROC curve is generated by varying the detector’s
threshold. Fig. 4 shows the ROC curves obtained with and without fusion of
the two bands. The curve found for the fusion is above the curve found for the
P-band, indicating that the combination of the two bands indeed improves edge
detection results.
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Fig. 4. ROC curve for edge detection results

6 Conclusions and Perspectives

In this article a new scheme for detecting edges in multi-frequency polarimetric
SAR images is presented. It consists of two steps. The first step uses a multi-
variate statistical hypothesis test to decide whether an edge of a given orientation
passes through the current point. The test is repeated for a discrete number (8)



of orientations. The multi-variate test is applied to the full-polarimetric image,
but each frequency band is treated separately because their spatial resolution is
different. The second step combines the edge detector response over the different
orientations. For this combination an approach based on Dempster-Shafer theory
was developed. The edge detector for each orientation behaves as an expert that
gives an opinion about the presence of an edge in a set of possible directions.
The confidence each expert assigns to each sub-set of orientations is determined
using mass function. A cost function is defined to find masses in order to in-
crease the distinction between edges, corners and background. The masses are
automatically optimised using this cost function. The method is applied to a set
of two full-polarimetric E-SAR images in resp. P- and L-band. In a next step we
will investigate further how to incorporate local spatial information, i.e. taking
into account neighbours of each pixel, to improve edge detection. In particular
we will explore a method to increase further the confidence in a given edge pixel
when neighbouring edge pixels in the higher-resolution image are found along
the same edge direction. We will also investigate the use of active contours to im-
prove detected edge structure and investigate synergy between our edge detector
and speckle reduction methods.
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